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FOREWORD

IT HAS BEEN estimated that delays io traffie at signal-controlled
inierscctions in Great Britain might amount to 100 million vehicle-
hours a year. Whilst much of this delay is inevitable with single-level
intersections it is clearly important to reduce it to a minimum: this
means that the signals should be correctly set. This paper presents
the results of research carried out by the Road Research Laboratory
into traffic-signal settings and expected delay to vehicles, It is the
first part of a larger investigation and deals with the problem of
fixed-time signals. Although 6 out of 7 signals in Great Britain are
of the vehicle-actuated type they behave effectively as fixed-time
lights when traffic is heavy, 1.e. when delays are greatest. The results
thus have application to those signals and also to linked systems of
lights which work on fixed cycles.

The investigation has been made using a high-speed electronic
computer to simulate the behaviour of traffic at the signals. A
formula for delay has been deduced and this has been used to deter-
mine two simple relations for the green times and cycle time that
give the least delay to all vehicles using the intersection.

As well as helping in the setting of signals, the results can be
used to assess the gains to be expected at signal-controlled inter-
sections from road improvements, from banning right-turners, and
from banning parked vehicles.

W. H. GLANVILLE,
Director of Road Research

ROAD RESEARCH LABORATORY
October, 1957
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Traffic Signal Settings

INTRODUCTION

EXTENSIVE use is made of traffic signals for the control of conflicting streams
of both vehicular and pedestrian traffic. In Great Britain alone there are more
than 4000 signal installations, and about 1000 of these are in the Greater
London Area. Moreover, the usage of traffic signals is increasing; for instance,
23 new sets of signals were installed in London in 1955.

Signals are of two main types, fixed-time and vehicle-actuated. With fixed-
time signals the sequence of lights shown on each approach to the intersection
has a cycle of fixed duration, and each signal indication appears for a fixed
period. With vehicle-actuated signals, however, approaching vehicles are
detected by devices in the road and the duration of the green period on each
approach varies with the traffic demand. Even though vehicle-actuated signals
are replacing the fixed-time variety in Great Britain, fixed-time signals number
about one in seven, and in some countries, c.g. the U.S.A., fixed-time signals
are much more numerous than vehicle-actuated ones. A more detailed des-
cription of signals can be found in ‘“Automatic street traffic signalling” by
Harrison and Priest(".

Since the introduction in 1926 of automatic signals much work has been done,
particularly in Great Britain and the U.S.A., on methods for setting traffic
signals (see Clayton®, Matson®). Almost all of this work was devoted to
fixed-time signals, and formulae for cycle time and the ratio of the green times
were deduced. With regard to delay, however, none of the formulae was really
applicable to practical conditions, being based on the assumption that traffic
arrives at an intersection at a uniform rate®. It has been shown by Adams (®
that, generally, the arrival times of vehicles are distributed at random, and this
has been substantiated by the results of experiments carried out by the Road
Research Laboratory. No satisfactory method was available for calculating
the delay when the flow was assumed to be random, and purely theoretical work
in this field has been of a very limited character. It was thus very difficult to
make a realistic assessment of any road improvements at signalled junctions
or of changes brought about by prohibiting waiting vehicles, right-turning
vehicles, etc.

This paper presents results of research conducted by the Road Research
Laboratory into the delays to vehicles at fixed-time traffic signals and into the
optimum settings of such signals. The methods developed in this study can be
applied both to fixed-time working and to vehicle-actuation, but, whereas at
fixed-time signals each approach can reasonably be treated separately, an
intersection controlled by vehicle-actuated signals must be dealt with as a
whole.

The results obtained provide a more definite basis for setting fixed-time
signals than any which have so far been published. Perhaps of more practical
importance, however, is their application to those vehicle-actuated signals
where the green periods owing to heavy traffic demands are frequently running
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to maximum, giving in effect fixed-time control. Such signals are very numerous
in large cities where the traffic flow is usually heavy between about 8 a.m. and
7 p.m. Furthermore, linked systems of traffic signals often work on a fixed cycle
which has been set to meet the requirements of the main intersection of the
system and the desired speed of the traffic along the road.

A glossary of terms and symbols used in this paper is given in Appendix 1.
In general, when formulae are quoted, no units are mentioned since the relations
hold between the physical quantities concerned. When interpreting a formula
it is, of course, necessary to use the same units of time throughout.

All important equations, and any other to which reference is made, are
numbered in order. The numbering of equations in each of the Appendices
starts at one, and is preceded by the number of the appendix, c.g. the fifth
equation of Appendix 3 is numbered (3:5).

METHOD

The first objective in the research was to determine delays. Since a theoretical
calculation of delay is very complex and direct observation of delay on the road
is complicated by uncontrollable variations, it was decided to use a method
whereby the events on the road are reproduced in the laboratory by means of
some machine which simulates the behaviour of traffic and traffic signals at an
intersection. This technique enables the variables to be controlled, e.g. the same
traffic can be used for several settings of the signals. The simulation was carried
out using the Pilot Model Ace (Automatic Computing Engine) at the National
Physical Laboratory through the kind co-operation of the Director. The high
attainable speed of the simulation process over ‘life’ speed is an additional
advantage. This method is described in more detail in Appendix 2.

To reproduce in the Laboratory the events on the road some record of actual
or artificially produced traffic is required. Traffic may be considered as arriving
at random® provided that the point at which it is observed is some distance
from a disturbing factor such as a controlled intersection. This was assumed in

Cycle time Bl Red time
[ Amber time
Red time Green + amber time Green time
Lost hime due A
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l—-‘— — — QOut point
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TIME
FIG. 1. DISTANCE/TIME DIAGRAM FOR SIGNAL-CONTROLLED
INTERSECTION
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producing artificial traffic records for this experiment. The delay to the traffic
is computed by counting the number of vehicles in the queue at fixed intervals
of time and multiplying this number by the value of the time interval. For
example, if there are n vehicles in the queue and the queue is counted every u
seconds then in a particular interval of time the total delay amounts to nu
vehicle-seconds. The total delay over a long period is obtained by summing
this product at every interval. The number of arrivals is also recorded and the
average delay is obtained by dividing the total delay by the number of arrivals.

When the green period commences a certain time elapses while vehicles are
accelerating to normal running speed (see Fig. 1), but after a few seconds the
queue discharges at a more or less constant rate, called the saturation flow. If
there is still a queue at the end of the green perioa some vehicles will make use
of the amber period to cross the intersection. In these circumstances traffic
moves on both green and amber signals but the discharge rate is less than the
saturation flow both at the beginning and at the end of the right-of-way period,
as shown in Fig. 2. The green and amber periods together (k+a) may be re-

Saturation flow

| |
|
RATE OF . Red

[ Amber
DISCHARGE OF
Vi
GUEUE IN Green

FULLY - SATURATED
GREEN PERIODS

Lost

Time\/
TIME —»

Wl 7 77 I

Lost

' \/ time

Effective green time

e e — e —
e ——

FIG 2. VARIATION OF DISCHARGE RATE OF QUEUE WITH
TIME IN A FULLY-SATURATED GREEN PERIOD

placed by an ‘effective’ green (g) and a ‘lost’ time (/), such that the product of
the effective green and the saturation flow is equal to the correct number of
vehicles (say, b) discharged from the queue on the average in a saturated green
period (i.e. a green period during which the queue never clears).

Thus, k+a=g+!

and b=gs

where s is the saturation flow.
It is assumed in the computation that the saturation flow is constant; in practice
it may vary within a cycle and between cycles, but it has been found that the

results obtained here, assuming a constant saturation flow, agree well with
values observed over a fairly large number of cycles.
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In the simulation experiment the signal sequence on any approach is thus
reduced to an ‘effective’ green period and a ‘red’ period which comprises all the
times when traffic cannot run, i.e. red and red-with-amber periods plus ‘lost’
time.

In the investigation described in this paper the delay to traffic using a single
approach to an intersection controlled by fixed-time traffic signals was computed
over a range of values of green times, cycle times, traffic flow and saturation
flow covering most practical possibilities.

AVERAGE DELAY PER VEHICLE

It was found that the results of the computation could be expressed to a close
approximation by the equation

ey c(l_'l)a x* o c\} (2+51)
g= 2(1—Ax) T 29(1—x) 0-65 (?) - M- )

where d = average delay per vehicle on the particular arm of the intersection
¢ = cycle time
A = proportion of the cycle which is effectively green for the phase
under consideration (i.e. g/c)
q = flow
s = saturation flow

and x = the degree of saturation. This is the ratio of the actual flow to
the maximum flow which can be passed through the intersection

from this arm, and is given by x = g/As
If d and c are in seconds, g and s are in vehicles per second.)

The expression for delay was not derived entirely theoretically. Terms | and 2
each have a theoretical meaning but the last term is purely empirical. The first
term of equation (1) is the expression for the delay when the traffic can be con-
sidered to be arriving at a uniform rate®. Although the agreement between
computed delays and those derived from this term is fairly good at low flows,
as shown by Fig. 3, it is not so at higher values where the computed delays,
owing to the random nature of the arrivals, are far in excess of values calculated
from this term only of the equation. The second term of equation (1) makes
some allowance for the random nature of the arrivals. It is an expression for
the delay experienced by vehicles arriving randomly in time at a ‘bottleneck’,
queueing up, and leaving at constant intervals(®. If the delay is represented by
these two terms, i.e. if

g C=M2 x?
T 2(1—) | 29 (1—x)

a fair agreement with the computed delays is obtained at all levels of flow (see
Fig. 3).
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When the empirical correction term (third term of equation (1)) is added to
the above expression the agreement is improved and the complete expression
gives a closer fit for all values of flow. Since the value of the correction term is
generally in the range 5 to 15 per cent of d the delay for most practical purposes
can be represented adequately by 9/10 of that given by equation (2).

The delay formula has been tested under actual road conditions at several
intersections with fixed-time and vehicle-actuated signals and the variation
between observed and calculated values was no greater than would be expected
due to random fluctuations (see Fig. 4).
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An estimate of the average delay per vehicle may be required by highway
engineers, e.g. to evaluate the economic advantages of road improvements. To
enable the cxpected delay to be estimated more easily, equation (1) has been
rewritten as

= - . .
where A = ="k B= T0—) and C is the correction term.
A and B have been tabulated (see Tables 1 and 2) and C has been calculated

as a percentage of the first two terms in (3) and is given in Table 3 in terms of
x, A and M where M = gc.

w—x——————
Fixed-time signals
@ 3 sites in London
1o A 1 site in Son Francisco | _ _ o) o)
Vehicle - actuated signals
= O 13 sites in London
H
o
2
100 ————
[ | 7| i
: i ! 7 | I !
] [}
x| I T A I i
a ] ! /S ] | 1
o | / ] ]
A [ ——
o 40 i
-
> A
w (2]
vy
@
[e]
S
L ]
o 20 w© ‘oo 120 140
CALCULATED DELAY — seconds

FIG. 4. COMPARISON OF OBSERVED AND
CALCULATED DELAYS

In addition, equation (1) as a whole has been tabulated over an extensive
range of values. These tables have not been included in this paper, but they can
be obtained, if desired, by application to the Director of Road Research.

Information available on lost time suggests a value of about 2 seconds per
phase plus any all-red periods. Since lost time depends on gradients, type of
traffic, etc. its value will vary from site to site and even at the same site will
probably vary with time of day. In fact, values ranging from % to 7 seconds
have been observed in extreme cases. However, the absolute value of lost time
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is not too important as far as delay is concerned provided that the product of
effective green and saturation flow gives the correct average number of vehicles
discharged from the queue in fully saturated green periods. In the absence of
more reliable information therefore it is suggested that its value is assumed to
be 2 seconds per phase (excluding any all-red periods). More research is being
carried out by the Laboratory into the effect of traffic behaviour and road layout
on lost time.

TABLE 1

(1—1)?
TABULATION OF A = 2(——1_)“)

A
X 01 | 02 | 03 |0:35 [0-40 [0-45 [0-50 [0-55 [0-60 [0-65 |0-70 0-80 |0-90

0-1{0-409|0-327/0-253|0-219{0-188!0-158/0-13210-107
0-2/0-4130-333(0-261]0-2270-196/0-166/0- 139
0-236{0-205/0-175/0-147
-246(0-214 0*184I:~156
-25610-225/0-195/0-167(0-
-262(0-231{0 -172/0-
0-267/0-237 179
0-273(0-243(0-214|

0-293}0-265/0-236/0-
0-301{0-273(0-245
0-308/0-281(0-254/0-
0-312(0-285(0-258)0-
0-315/0-2880-262
10-318]0-292{0-266/0
10-322/0-296{0-271




TABLE 2

xi

TABULATION OF B = 2_(1-—_1)‘

x | 000 [ 001 | 0-02 | 0-03 [ 0-04 | 005 | 006 | 0-07

008

0-09

0-1 | 0-006| 0-007) 0-008| 0-010| 0-011} 0-013| 0-015| 0-017
0-2 | 0-025| 0-028| 0-031] 0-034| 0-038| 0-042) 0-046| 0-050|
0-3 | 0-064| 0-070| 0-075| 0-081| 0-088| 0-094| 0-101| 0-109
04 | 0-133] 0-142) 0-152] 0-162| 0-173| 0-184] 0-196| 0-208
0-5 | 0-250| 0-265| 0-282( 0-299| 0-317| 0-336| 0-356| 0-378
0-6 | 0-450 0-477| 0-506] 0-536| 0-569| 0-604| 0-641| 0-680)
0-7 | 0-817) 0-869| 0-926/ 0-987| 1-05 | 1-13 | 1-20 | 1-29
08 ) 160 | 1-73 | 1-87 | 2:03 | 221 | 2:41 | 2:64 | 291
09| 405|460 | 528|618 | 736|903 | 11-5| 157

0:020
0-054
0116
0222
0-400
0-723
1-38
323
240

0022
0-059
0-125
0235
0-425
0-768
1-49
3-60
490

Example

The flow on a particular arm of a junction is 600 vehicles per hour and the
signal settings are 29 seconds green, 3 seconds amber and 60 seconds cycle
time. It is observed that on the average 15-0 vehicles are discharged in a fully
saturated green period. If we assume that starting delays, etc. are responsible
for 2 seconds of each green-plus-amber period then 15 vehicles are discharged

in an effective green time of 30 seconds, i.e. s=1800 vehicles per hour.

We have,
_&_30_
A= P 0-5
g _ S0 _ .
%= 5e ™ Dipiao0y — o6l
and M = 10
From Table 1, 4 = 0-187
From Table 2, 8 = 0667

From Table 3, C
Using equation (3)

9 per cent of the first two terms

0667
d = 60(0-187) + 600/3600 — C
= 1124+40—-C
= 152—14
d = 13-8 seconds



TABLE 3

CORRECTION TERM OF EQUATION (1) AS A PERCENTAGE
OF THE FIRST TWO TERMS

x Y 2:5 5 10 20 40
A
02 2 2 1 1 0
0-4 2 1 1 0 0
03 0-6 0 0 0 0 0
08 0 0 0 0 0
0-2 6 4 3 2 1
04 3 2 2 1 1
0-4 06 2 2 1 1 0
08 2 1 1 1 1
02 10 7 5 3 2
0-4 6 5 4 2 1
05 06 6 4 3 2 2
0-8 3 4 3 3 2
02 14 11 8 5 3
04 11 9 7 4 3
06 06 9 8 6 5 K}
08 7 8 8 7 5
02 18 14 11 7 5
04 15 13 10 7 5
07 0-6 13 12 10 8 6
08 11 12 13 12 10
02 18 17 13 10 7
0-4 16 15 13 10 8
08 0-6 15 15 14 12 9
08 14 15 17 17 15
02 13 14 13 11 8
04 12 13 13 9
09 06 12 13 14 14 12
08 13 13 16 17 17
02 8 9 9 9 8
04 7 9 9 10 9
095 | 06 7 9 10 11 10
08 7 9 10 12 13
02 8 9 10 9 8
0.4 8 9 10 10 9
0975 06 8 9 11 12 11
08 8 10 12 13 14

*M is the average flow per cycle = gc

OPTIMUM SETTINGS OF FIXED-TIME SIGNALS

In general, all approaches belonging to the same phase will have the same green
period even though the traffic requirements of the approaches may be different.
It will be shown later that each phase can be represented by one approach only
—the one with the highest ratio of flow to saturation flow. Let this ratio be
denoted by the symbol y.



In deriving the optimum green times and cycle time the empirical correction
term of the delay equation was neglected since some preliminary calculations
showed that its variation with respect to these quantities was slight.

Green times

It is suggested in the traffic engineering handbook(” that the least delay to
traffic is obtained when the green periods of the phases are in proportion to the
corresponding ratios of flow to saturation flow, assuming this ratio to be the
same for all arms of the same phase. This division of the cycle time makes the
capacity of the phases* proportional to the average flows of the phases. That
this is approximately the best division of the cycle time is shown by the examples
given below.

\ /

CYCLE TIME
(luonds)

— seconds

15 \‘
3 35
5 »)
=
a
z
o 1o
(=]
w
(L}
= N
w
z b e

q Flow : vehicles per hour
- & s Soturation flow s IBOO vehicles
g |— L 300 A %0 per hour on all arms e
w E L Loit time per cycle: IO seconds
q," 600 q Effective green time
s
[e] I-0 2:0 30 4-0
Qu-s
Qe-w

FIG. 5. EFFECT ON DELAY OF VARIATION OF RATIO OF GREEN
PERIODS

* Capacity is the maximum amount of traffic that can be discharged in the green period.
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The total delay experienced by vehicles at an intersection was calculated
using the approximate form of the delay equation (equation (2)). The lost time
was assumed to be 10 seconds per cycle and delays were calculated for a variety
of cycle times and ratios of the effective green times. A typical result is shown in
Fig. 5, where the ratio of the y values is 2:0. It can be seen that the best ratio of
the effective green times is between 1-88 and 2:17 over a range of cycle times of
35 to 80 seconds. Many other examples have been worked out in a similar
manner and the results in a few cases, including the example illustrated in Fig.5,
are given in Table 4. In each case the ratio of the green times which gave the
least delay was obtained from curves such as those plotted in Fig. 5, and in
cases 1 to 4, from the curves corresponding to the most favourable cycle times.
The ratio of the y values can be seen to be within a few per cent of the best ratio
of the effective green times and the extra delay (over the theoretical minimum)
that results from making the effective green ratio equal to the y ratio is very
small, as shown in the last column of Table 4.

The problem has also been treated mathematically and it has been shown
that, for a two-phase intersection, where y,/y, is greater than unity the effective
green ratio should, strictly, be slightly less than the y ratio. However, the differ-
ence is negligible in most cases. Futhermore, it has been shown that, where
the two arms of a single phase have different values of the ratio g/s (so far they
have been assumed to be equal), approximately minimum overall delay is still

TABLE 4
OPTIMUM GREEN PROPORTIONS FOR VARIOUS TRAFFIC PATTERNS
(Lost time of 10 seconds per cycle)
Percentage
Flow (vehicles/hour) increase in delay
Saturation flow over theoretical
Cycle length SN-s minimum values,
Case | N-S phase | E-W phase | (seconds) Ze-w Yn-3 | when effective
No. for minimum delay| Ye-w ”?:“;‘:"m
N S E w (computed resuits) oy ue:m
900| 900 300 300
1" |1s00|7800| 7800 |1800| & 280 3-00 2
600| 600| 600| 600
2 |1200|1200| 2400|2900 % L 2o 3
600| 600| 200| 200
3 |iso0|1800| 600|600 113 100 1
750 200| 400| 400
4 |7s00|7800| 800 |T200| % 1233 125 0
35 1-88 200 1
40 190 2-00 1
5 600| 600| 300| 300
1800 | 1800 | 1800 | 1800 60 2407 2-00 0
80 217 2:00 1

11



obtained by dividing the cycle according to the y values even though the g/s
ratio of other arms may have any values between O and y.

Summing up therefore, it may be stated that for all practical purposes the
simple rule of setting the effective green times in proportion to the y values of
the phases is adequate, particularly since some of the variables, e.g. saturation
flow and lost time, can usually only be estimated approximately. After calculat-
ing the effective green times according to the simple rule the lost time per phase
should be added and the amber period substracted from these values giving the
controller settings of the green times. The phase having the lower green time
may be given preference when rounding off the controller settings to whole
numbers of seconds.

Cycle time

In deriving an expression for the optimum cycle time it was assumed that the
effective green times of the phases were in the ratio of their respective y values.
Equation (2) representing the delay to traffic on one arm of an intersection
was modified to cover the general case of an intersection with n phases, and the
modified equation differentiated with respect to cycle tinie, to determine the

TIME —
One cycle 0

Red q
A:nber Phase B
Green | G799 o A A A TS, |

CONCURRENT AMBERS

[ I Phase A
E’ | YA AL AL ST S IITTD.
| I Phate B
| A A A A A A S SIS IS | %

SEQUENT AMBERS

[ \ ) Phase A
v b ] [}
[ Adjustable ) 1
[ 1 1
[}
1

|
I
- ]
_—! !‘____/all red perlole }4_

|| II || Phase B

ALL-RED PERIODS

FIG. 6. DIAGRAM SHOWING POSSIBLE ASPECTS OF THE SIGNALS
AT A 2-PHASE INTERSECTION
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value of cycle time which gives the least delay to all traffic using the intersection.
The derivation of the optimum cycle-time formula (equation (3:12)) is given
in Appendix 3. It was considered that this formula was too compliczied for
most purposes and a simple approximation was therefore derived (see Appendix
3). It is given by

15SL+5
o = “1‘:4‘7 SECONAS ... et @)

where Y is the sum of the y values and refers to the intersection as a whole and
L is the total lost time per cycle in seconds. The lost time can be expressed by
L=nl+R
where n is the number of phases
! is the average lost time per phase (excluding any all-red periods or
sequent ambers)
R is the time during each cycle when all signals display red (including
red-with-amber) simultaneously (see Fig. 6).

Equation (4) should be adequate for most practical situations. However, if it
is desired to use the more exact formula for the determination of the cycle
length, this may be done fairly simply by carrying out the procedure given in
Appendix 3, where the equations have been broken down into a series of simple
operations; some of these remain in their arithmetical form whilst the others
have been tabulated and converted into graphical form.

Asymptote 1o curve
1600 2409 2509 30Q0 2.PHASE , 4-ARM INTERSECTION
! i i Equol flows on oll orms
I 1 | Equal saturation flows : 1800 vehicles
5 I | 1 per hour
9 1 Equal green times
< 1
% 80 | Total lost rime per cycle: 10 seconds
: | I
g ! : ! TOTAL FLOW ENTERING
T 60 INTERSECTION
< vehicles per hour
& 3000
s T — —
S N, S < 2800
>
< i hac, -‘__'..—-‘ 2400
b % K ——
el \ LY Y e 1600
Q0 %c, Ce —
w M
z e, ¢ e,
| |
(o] 20 40 50 BO 100 120 140 160
CYCLE TIME —_ seconds

FIG. 7. EFFECT ON DELAY OF VARIATION OF THBE CYCLB LENGTH

Several examples of hypothetical intersections (including some fairly extreme
cases) have been studied to show the effect of changes in cycle time on the delay.
For a symmetrical intersection values of delay have been deduced from equation
(1) and are shown in Fig. 7 plotted against the cycle length for several values of
the total flow entering the intersection. The cycle time giving the least delay is in
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each case approximatcly twice the least possible cycle which will just allow the
traffic to pass through (although with long delays). The latter is called the
minimum cycle, and is, of course, the vertical asymptote to the delay/cycle-
time curve. This simple relation between the optimum cycle and the minimum
cycle was used in deriving the more accurate expressions for the optimum cycle
time in Appendix 3.

When traffic is of a truly random character the minimum cycle is associated
with infinite delay. For uniform flow it is the cycle such that all traffic arriving
during the cycle can just be discharged during the green. However, even in this
case it represents an unstable situation, since any increase in flow, however
slight, will result in the formation of a steadily increasing queue. Previous
formulae for cycle times have been based on the minimum cycle for uniform
arrivals, the constants being adjusted empirically to account for the difference
between random and uniform flow(®,

From graphs such as Fig. 7, it was found that in most practical cases the
delay for cycle times within the range # to 1} times the optimum value is never
more than 10 to 20 per cent greater than that given by the optimum cycle. This
fact can be used in deducing a compromise cycle time when the level of flow
varies considerably throughout the day. It would be better either to change the
cycle time to take account of this, or, as is more common, to use vehicle-
actuated signals. However, for a single setting of fixed-time signals the simple
approximate method outlined below may be used.

(i) Calculate the optimum cycle for each hour of the day when the traffic
flow is medium or heavy, e.g. between the hours of 8 a.m. and 7 p.m. and
average over the day.

(ii) Evaluate three-quarters of the optimum cycle calculated for the heaviest
peak hour.

(iii) Select whichever is greater for the cycle time.

It is suggested as a reasonable procedure that the division of the available
green time (c, — L) should be in proportion to the average y values for peak
periods only, i.e.

& _ O
B Do, | T T s s oo (5)

where () is the average y value during the peak periods for phase 1 and
(#2)resx that for phase 2.
Example. Measurements of flow and saturation flow at a particular 2-phase,
4-arm intersection were as follows:
North  South  East West

Flow (q) vehicles per hour .. 600 450 900 750
Saturation flow (s) ,, o e e 2400 2000 3000 3000
Ratio (g/s) ce .. .. .. 0250 0225 0300 0250
yvalues .. .. .. .. - 0-250 0-300
Lost time

Starting delays. . s - - 2 seconds per phase

All-red periods 3 % .. 3 seconds at each change of right

of way

The total time per cycle when red or red-with-amber signals are showing to all
phases is 12 seconds (see Fig. 6). The total lost time per cycle is therefore 16
seconds.
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Substituting in equation (4) we have

1-5(16) + 5 2
1 —0250 — 0-300 ~— 0-450
In one cycle there will be 64 — 16 = 48 seconds total effective green time which
should be divided between the north-south, east-west phases in the ratio of
0-250 : 0-300. The effective green times of the phases are therefore 22 seconds
N-S and 26 seconds E-W, and the controller settings will be obtained by in-
cluding the 2 seconds lost time in each phase, viz.

N-S phase: 21 seconds green plus 3 seconds amber,
E-W phase: 25 seconds green plus 3 seconds amber.

Under light traffic conditions the ‘optimum’ cycle time as deduced from
equation (4) may be very short. From a practical point of view including safety
considerations, it is undesirable to have cycles less than, say, about 25 seconds.
In any case, the assumptions made in deducing the optimum cycle time formula
may no longer hold when the green periods are so short.

= 64 seconds

Co =

MISCELLANEOUS RESULTS

Degree of saturation
It is shown in Appendix 4 that for optimum division of the cycle time the

degree of saturation should be the same for all phases of the intersection. In

this calculation, we have considered only one arm from each phase—the one

with the highest g/s value. The degree of saturation for optimum settings of the

controller appears to be independent of the amount of lost time per cycle,

depending only on Y. It is given by equation (4'7) in Appendix 4 as

_

SFT crrrrrertetceseesseseseiecieeien

Average delay for the whole intersection

The average delay to all vehicles using an intersection has been deduced for
optimum settings of the controller. The steps of the calculation are shown in
Appendix 4 where the average delay per vehicle is given by equation (4-12) as

Xo

n
g T e
2 Yo Lo(1+7Y)

where n' is the number of approaches to the intersection. This expression applies
only to junctions where all arms of any one phase have approximately the same
ratio of flow to saturation flow. The expression does not include the empirical
correction term of equation (1), but this can be taken into account, approxi-
mately, by reducing 4 by about 10 per cent.

1t may be simpler to use equation (7) to estimate the average overall delay
for an intersection working under optimum conditions than to calculate the
delay for each phase individually and average over the number of vehicles. The
value deduced from the equation may be compared with existing delays at a
particular intersection to indicate the magnitude of possible improvements
which may be obtained from retiming the signals.

For a constant ratio of flows (phase 1 to phase 2) the average delay under
optimum conditions varies in direct proportion to the optimum cycle. Thus,
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if a programme alters the cycle time to maintain optimum conditions at an

intersection as the flows vary (either according to a pre-arranged plan or by using

a detector to count the traffic and effect the necessary changes in controller

settings), the changes in cycle time should be accompanied by proportionate

changes in average delay, provided the ratio of flows remains fairly constant.
A few examples of the use of equation (7) are shown in Appendix 4.

Number of fully saturated green periods

During the computation of delay, the queue at the beginning of each green
period was recorded and a frequency distribution of queues was obtained for
each set of variables. The number of cycles during which the queue never
cleared was deduced theoretically from a knowledge of the frequency distri-
bution of the queue at the beginning of the green period and the probability
that a given queue would be reinforced by sufficient arrivals during the green
period to prevent it from disappearing before the end of the green period. These
values are shown in Fig. 8. The number of cycles running to saturation can
provide a quick and easy check on the degree of saturation.

I-0 T T

a M 15 the number of vehicles
= arriving i each cycle on
= o8 the average, ie
- M= flow x cycle time M= 2.5
i \\)///
. B
:—73 O-b ///
:_l
w U

5 /]
bu 04
z M= 0-0 /
2 o2 6o // /
5 J Vo
o M« 40:0
g 45//

o 0-2 04 (o o8 [He]
DEGREE OF SATURATION, X

FIG. 8. THE PROPORTION OF CYCLES WHICH RUN TO SATURATION

Experiments were carried out at three intersections in the London area to
test this result. The observed degree of saturation over a period of a few hours
(obtained by dividing the flow by the product of saturation flow and the pro-
portion of green time) compared satisfactorily with values obtained from Fig. 8,
knowing the number of cycles which were fully saturated and the average
number of vehicles which arrived in each cycle. The comparison is shown in
Table 5.

Queues

In designing signal control at an intersection it is important to know what
extensions of the queue are likely to occur, particularly if other intersections
are fairly close.

As already stated, a frequency distribution of queues was obtained from the
computation. For light flows the average queue at the beginning of the green
period was almost always equal to the number of vehicles which had arrived
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during the red period, and tence followed a Poisson distribution, but for
heavier flows the distribution had a considerably longer tail. The point at which
an appreciable departure from the Poisson distribution occurs is that at which
the majority of the cycles are fully saturated.

The queue at the beginning of the green period, is, in general, the maximum
queue in each cycle. It is, to a large extent, a function of the delay at the inter-
section. Owing to the random nature of the arrivals there is usually a mixture
of saturated and unsaturated cycles, and in deriving an expression for the queue
length it was found necessary to deal with these types of cycles separately, com-
bining the results to cover the general case (see Appendix 5). The average queue
at the beginning of the green period is given approximately by equation (5-8) as:

N= (32—'+qd) OEGE swcsnses sl st e B1Ed W)
whichever is the larger, where r is the red time, g is the flow, and d is the average
delay per vehicle.

Several values of queue length, determined from equation (8), are shown in
Table 6 to be in good agreement with computed values.

TABLE §

TEST EXPERIMENTS: FIXED-TIME SIGNALS

Queues
(N) Degree of
(average number saturation
Location of vehicles) (%)
Calk. Obs. From  Obs.
Fig. 8
0Old St/City Rd
North arm ¢ i § . i 89 9:6 89 89
East arm ’ ¥ p v . 60 63 88 87
Clerkenwell Rd/St John's St
West arm . . . ) A 70 72 88 86
Southarm . + 0 3 . 1-7 20 —_ —_
Putney High St/Upper Richmond Rd
West arm ¥ s " “ « 54 61 79 76
Southarm . . 5 s A 58 60 81 3
Mean values . . . . . 58 62 85 82

In the theoretical treatment (as well as in the simulation experiment) it was
assumed that vehicles continued at normal speed until they reached the inter-
section, joining the queue at times represented by A, A’, etc. in Fig. 1. However,
owing to the finite extension of the queue in practice, vehicles would join the
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TABLE 6

COMPARISON OF THE COMPUTED VALUES OF AVERAGE QUEUE
LENGTH AT THE BEGINNING OF THE GREEN PERIOD
WITH THEORETICAL VALUES

M* 25 100 400
Degree of Theo- Theo- Theo-
saturation | §, Computed | retical |Computed| retical |Computed| retical
x (equation (equation (equaton
(8) [€)] ®)
. 04 15 1-5¢ 60 60t 241 240t
08 05 0-5t 2-1 2:0t 83 8:0t
. 04 16 1-5t 60 60t 242 240t
-5
08 07 06 22 2:0t 83 8:0t
% 0-4 2:1 20 62 60t 243 24-0t
-7
08 122 12 25 2-1 85 8:0t
. 04 27 27 67 65 245 24-0t
-8
0-8 19 1-9 31 29 88 8-0t
_—- 04 56 56 88 87 261 254
08 48 48 53 52 10-6 98
0-4 112 11-2 131 13:1 30°1 29-8
095
08 10-4 10-4 99 98 15-1 147
04 250 249 235 235 393 39:1
0975
08 235 24-0 20:0 200 244 243

* M is the average number of vehicles arriving per cycle = g¢
t Equation (8) was read as N = gr for these values

queue earlier than these times and a correction should be applied to the above
formula. The corrected expression is given by equation (5-9) in Appendix 5 as

N=q(§r+d)(l+g) or gr (1+z—:) .................. ©)

whichever is the larger, where j is the average spacing of vehicles in the queue, a
is the number of lanes and v is the free running speed of the traffic.

For general purposes equation (8) is adequate since the correction factor
affects the results by only 5 to 10 per cent.

It is also useful to know how long the queue is likely to be in extreme cases,
say, one cycle in a hundred or one cycle in twenty. Tables 7 and 8 show the
possible extensions of the queue at the beginning of the green period in these
infrequent cases. A probability of one in a hundred that the queue will exceed
the given value means that, for a cycle of 60 seconds, say, the queue will extend
beyond the given value only once in about 2 hours. These tables can be used
for any fixed-time intersection.
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TABLE 7

CRITICAL MAXIMUM QUEUES (1 1N 100)

(Probability of the maximum queue ia any cycle being equal to or greater than
the critical value is 1 per cent)

Degree of N‘ 25 | 50 | 100 | 200 | 400
saturation
x
04 6 9 14 23 38
03 0-6 5 6 11 17 28
08 3 5 7 12 17
02 7 9 17 29 53
04 6 9 14 23 38
05
06 5 7 11 17 28
08 4 5 7 12 18
02 9 12 17 28 50
04 9 9 15 23 38
07
06 8 12 18 28
08 7 7 8 12 18
02 13 15 19 28 50
- 04 12 13 17 24 39
06 12 13 14 20 28
08 11 12 12 15 18
02 29 25 29 38 55
04 28 24 27 33 46
09
06 27 24 26 28 42
08 27 23 24 25 29
02 40 36 38 47 65
04 40 34 37 44 55
0-95
0-6 40 32 30 42 438
08 39 32 M 36 40
02 82 70 79 69 93
04 83 66 75 65 82
0975
06 82 70 69 58 9
0-8 79 65 66 56 79

*M is the average number of vehicles arriving per cycle = ge¢
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TABLE 8

CRITICAL MAXIMUM QUEUES (1 IN 20)

(Probability of the maximum queue in any cycle being equal to or greater than
the critical value is 5 per cent)

Degree of A M*| 25 50 | 100 | 200 | 400
saturation
x
04 5 7 12 20 34
03 06 4 5 15 b/
08 3 4 6 9 15
02 6 7 15 26 47
04 5 7 12 20 s
05
06 4 5 9 15 24
08 3 4 9 15
02 7 9 15 25 44
04 6 8 12 20 34
07
06 5 7 9 15 25
08 5 5 7 9 15
02 9 12 16 25 46
04 8 11 14 21 35
08
06 8 9 11 16 25
08 7 9 n 16
02 19 18 22 30 49
04 19 17 20 23 39
09
06 19 16 17 21 4
08 18 15 15 18 2
02 36 28 33 40 55
04 35 27 30 35 47
095
06 4 26 25 34 39
08 34 25 27 27 32
02 74 63 65 62 84
04 74 57 65 59 75
0975
06 69 61 62 34 65
08 65 56 61 52 64

*M is the average number of vehicles arriving per cycle = gc
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Test experiments have been carried out at three intersections in the London
area. Queues were recorded at the beginning of each green period for about
three hours. The mean queue length is compared in Table 5 with values calcul-
ated from equation (9). Calculated values of delay were substituted in the
formula.

Table 8 was used to give the critical value of queue which should only be
exceeded in 1 out of every 20 cycles on the average. It was found that the
critical queue was exceeded once in 17 cycles over about 6 hours of observa-
tions.

More detailed tests were carried out at the intersection of Putney High Street
and Upper Richmond Road, London, where it was found that the observed
values of delay, queue and degree of saturation agreed with calculated values
within the limits of scatter expected from the sizes of the samples.

Stops and starts

Proportion of vehicles which stop at least once. It is assumed for simplicity
that all vehicles which arrive at the intersection while the queue of vehicles is
discharging, have to stop, although in practice some of them may only have to
slow down. The following expression for the proportion of vehicles which stop
at least once (denoted by R) is deduced in Appendix 6:

_ 1=
gt e

Average number of stops and starts per vehicle. The average number of stops
and starts made by vehicles is an important factor when considering the wear
and tear of vehicles, fuel consumption and annoyance to drivers. The total
number of stops and starts in each cycle is approximately equal to the number
of vehicles in the queue at the beginning of the green period plus those vehicles
which arrive while the queue is clearing. As already mentioned some of these
vehicles would probably only have to slow down but for simplicity it is assumed
here that they stop.

If the average queue at the beginning of the green period can clear during
the green, i.e. if

s—q <8
then the average number of stops and starts (P) is shown in Appendix 6, to be:
N
e I T — 11
ge(1 —y) (n

where N is given approximately by equation (8).
(i.e. if the queue N cannot be discharged fully during the

If.r-—- q g green period)

then
N :
P= s +A (see Appendix 6) ............couvnnnns (12)

Figure 9, for a particular case, shows how the average number of stops and
starts compares with the proportion of vehicles that stop at least once.
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FIG. 9. COMPARISON OF THE NUMBER OF VEHICLES STOPPED AT
LEAST ONCE AND THE AVERAGE NUMBER OF STOPS AND STARTS
PER VEHICLE IN A PARTICULAR CASE

OBSERVATIONS ON THE ROAD
The following observations require to be taken when setting signals:

Flow

A census of all traffic using the intersection over several hours of the day
(including all peak periods) is required. The census should preferably include a
count of the number of right-turning® vehicles and the number of medium and
heavy commercial vehicles.

* or left-turning where the right-hand rule of the road applics.
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Saturation flow

Saturation flow may be measured on the road by counting the number of
vehicles discharged from the queue during a representative number of fully
saturated green periods and dividing the mean number by the average effective
green period assuming a fixed value of lost time (say, 2 seconds). More refined
methods for measuring saturation flow and lost time are available, but it has
been found that the above method gives reasonable results in practice.

If in the majority of cycles the queue clears before the end of the green period
the saturation flow may be obtained approximately by recording the time during
which the queue is clearing and the number of vehicles discharged during this
saturation period.

Though a direct measurement is obviously desirable in order to obtain reliable
results it is not always practicable or indeed possible, e.g. when designing new
intersections, and rules based on measurements of saturation flow carried out
by the Road Rescarch Laboratory at a large number of existing intersections
can be used. To supplement these observations controlled traffic experiments
were carried out off the highway on a test track. The results of these investiga-
tions into the saturation flow (5s) can be expressed in terms of passenger car
units (p.c.u.), with no turning traffic and with no parked vehicles present.

For approach road width (w) between 10 and 17 feet s is given by

w(ft): 10 11 12 13 14 15 16 17
s (p-c.u./h): 1675 1700 1725 1775 1875 2025 2250 2450
but for approach widths greater than 17 feet the saturation flow is given by
s = 145w p.c.u./h.
The experiment under controlled conditions has shown that the relationship
is linear up to at least 60 feet.

Effect of composition of traffic. The effect of different types of vehicles on the
saturation flow is given by the following equivalents:

1 heavy or medium commercial vehicle: 1} p.c.u.

1 bus: 2} p.c.u.
1 tram: 2} p.cu.
1 light goods vehicle: 1 p.c.u.
1 motorcycle: § p.c.u. (estimated)
1 pedal cycle: i pcu.
Effect of turning traffic. The results of the experiments gave the following
equivalent:

1 right turning vehicle: 1} straight ahead vehicles.

This result may tend to underestimate the effect of a right-turning vehicle
because cases where right-turners were given special phases or where they
frequently blocked the intersection were omitted.

In nearly all cases the saturation flow/time curve (as in Fig. 2) showed that
saturation flow was reasonably constant (after allowing for starting delays, etc.).
However, at some sites where right-turning vehicles have been a particular prob-
lem the saturation flow has been observed to fall after the first 10 seconds or
so of green time.

Effect of a parked vehicle. It has been found that the reduction in saturation
flow caused by a parked vehicle is equivalent to a loss of carriageway width at
the stop line. The experiments showed that with green periods of the order
of 25 seconds a car parked at the stop line had the same effect on saturation
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flow as if the road were 5} feet narrower; at clear distances of 50, 100 and 150
feet from the stop line the loss in saturation flow was the same as if the road was
respectively 4}, 2} and 1 foot narrower. Allowing for the theoretical effect of
changing the green period, this can be expressed approximately by

0-9(zk—25) -

where z = clear distance of parked car from stop line (feet) and k = green
time (seconds).
If z < 25 feet the second term should be taken as zero and if the second
term is greater than 5-5 feet the whole expression should be taken as zero.
The effective loss should be increased by 50 per cent for a parked lorry or wide
van.

effective loss of carriageway width = 5-5—

...(13)

SUMMARY OF PROCEDURE FOR SETTING
TRAFFIC SIGNALS

In a period where the traffic flow is varying randomly about the mean, the
procedure for obtaining optimum settings is as follows:
(i) Estimate the flow and saturation flow for each arm of the intersection.

(i) Evaluate the ratio of flow to saturation flow for each arm, and select
the y value for each phase (i.e. the maximum g/s value).

(iii) Add the y values together to give Y for the whole intersection.

(iv) Decide on all-red periods for pedestrians, turning traffic, etc. and
estimate the lost time, R, due to this, e.g. if sequent ambers occur twice per
cycle then R = 6 seconds; if there are two all-red periods of 2 seconds each then
R = 10 seconds (see Fig. 6).

(v) Calculate the cycle time from equation (4):

Bl 1-5L+5
I T
where L is the total lost time per cycle, given by
L =nl+R

where n is the number of phases and / is the average lost time per phase
due to starting delays.
(vi) Subtract the total lost time, L, from the cycle time giving the available
green time and divide this in the ratio of the y values, i.e.

£ =(e—L)

g1 = '?(c,—L) etc.

(vii) Add / seconds to each effective green time, g,, g3, . - - and sfubtract the
amber period (3 seconds) to give the controller setting of green time.

SUMMARY

Delays at intersections controlled by traffic signals have been investigated using
an electronic computing machine to simulate traffic conditions.
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A formula for the average delay per vehicle on a single approach to an inter-
section controlled by fixed-time traffic signals (or vehicle-actuated signals
working on a fixed cycle because of heavy traffic demands) has been derived
from the computed results.

Formulae have been deduced for the cycle time and green times which give
the least delay to all vehicles using the intersection. Tables and formulae for
queues and the number of stops and starts of vehicles have been obtained.
These formulae and tables have been tested under actual road conditions with
satisfactory results.
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APPENDIX |

GLOSSARY AND SYMBOLS

Number of phases, where a phase is a state of the signals during which a
particular traffic stream or group of streams receives right of way.

Average delay per vehicle on a single approach to an intersection. It is the
difference between the average journey time through the intersection and
the time for a run which is not stopped or slowed down by the signals.
Total delay per unit time for the whole intersection, i.e. flow x average
delay per vehicle.

Average delay to all vehicles using the intersection.

Cycle time.

Optimum cycle time—the cycle time which gives the least average delay
to all vehicles using the intersection.

Minimum cycle time—the cycle which is theoretically just long enough to
pass the traffic through the intersection.

All-red period—the time during each cycle when all signals display red
or red with amber.

Lost time for a single phase—the amount of time in a cycle which is
effectively lost to traffic movement in the phase because of stzrting delays
and the falling-off of the discharge rate which occurs during the amber
period.

Total lost time per cycle—the sum of the lost times for each phase and those
periods when all signals show red or red with amber. It is given by (n/+ R).
Green time setting on the controller.

Effective green time—the sum of the green period and the amber period
less the lost time for the particular phase.

Red time—time during which the signal is red or red with amber on a
particular phase.

The proportion of the cycle which is effectively green for a particular
phase (g/c).

The flow—average number of vehicles passing a given point on the road
in the same direction per unit of time.

Total flow through the intersection.

Saturation flow—maximum rate of discharge of the queue during the
green period.

The maximum ratio of flow to saturation flow (g/s) for a given phase.
Summation for the whole intersection of the y values corresponding to
each phase.

Degree of saturation—ratio of the flow to the maximum flow which can
just be passed through the intersection from the particular approach. It is
given by g/As.
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Degree of saturation when the cycle time and green times have optimum
values.

Average queue at the beginning of the green period.

Average number of vehicles arriving in each cycle.

Average number of times that a vehicle is stopped on a particular approach
to an intersection.

The proportion of vehicles which are stopped at least once.

R 3

=~

APPENDIX 2

SIMULATION METHOD USED FOR ESTIMATING DELAYS

A SIMULATION method is one in which actual events are reproduced using a
‘model’ and information is obtained from the behaviour of the model instead
of from the events themselves. Such a method is often used where the actual
events are too complicated to study empirically owing to the number of variables
involved or where an analytical solution is too difficult.

Simulation can be carried out by making a special model to suit the particular
purpose or, if the problem can be reduced to a series of logical manipulations
(which, if the amount of work involved were not prohibitive, could be carried
out manually), by using a general purpose digital computing machine. In the
case of the traffic signal problem the Pilot Model of the ACE* was used. Since
this is a general purpose machine, a theoretical ‘model’ for estimating delays at
fixed-time signals was formulated based on the following assumptions:

(i) For fixed-time signals each approach to an intersection can be studied
independently.

(ii) Traffic is assumed to arrive at the intersection at random. In fact, the
actual distribution obtained from observations on the road could be used but
random traffic has the advantage that it can be generated artificially using tables
of random numbers to derive the intervals between successive vehicles.

(iii) Vehicles are discharged from the queue at a constant rate (called the
saturation flow) during the effective green time. During the red time no flow
takes place. The first vehicle in the green time to be discharged is delayed a
‘random’ fraction of a normal discharge interval in order that the number of
vehicles discharged in fully saturated green periods will be proportional to the
length of the effective green time. This provides continuity when investigating
the effect of different green times.

(iv) Delay is defined more clearly by referring to Fig. 1, where the position
of a vehicle along a road is plotted against time. The ‘in’ point shown in Fig. 1
is a point just outside the influence of the intersection and the ‘out’ point is at
such a distance that a vehicle, after passing through the intersection would have
attained normal running speed. Delay is defined as the difference between the
time taken to travel through the intersection from the ‘in’ point to the ‘out’
point and the time taken to travel that distance at the normal running speed
(i.e. if the intersection were not there). For any particular vehicle, say X, it will
be seen that the delay is given by AB.

* The Pilot Model Ace (Automatic Computing Engine) was a high-speed clectronic calculating
machine housed at the National Physical Laboratory, Teddington, England. It has now been
superseded by the peuce (Digital Electronic Universal Computing Engine).
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In the theoretical model some simplicity can be introduced without affecting
the accuracy of the delay measurement. It can be assumed that vehicle X
(Fig. 1) arrives at the stop line at A and departs at B. Similarly vehicle X’
arrives at A’ and departs at B’. The time distribution of the arrivals A, A’, etc.
will be the same as that at the ‘in’ point so that if the latter is assumed to be
random then the distribution of A, A’, elc, is also random. Similarly, the
distribution of B, B’, etc. is the same as that at the ‘out’ point. Thus, once the
lost time has expired vehicles in the model can be discharged at regular intervals.

The Pilot AcE receives all instructions and data on Hollerith cards and
traffic was therefore prepared in this form by punching holes in the cards to
represent the arrival of vehicles at the intersection. In this investigation time is
the fundamental variable and a quantized time scale was obtained by consider-
ing each position on the card in order as one unit of time. Each card of the pack
extends the time scale by a given number of units. A hole punched in a par-
ticular position on a particular card means that a vehicle has arrived at the
intersection in that unit of time. The shorter the unit of time, the nearer the
time scale approaches a continuous one.

Traffic was generated using a sequence of random numbers (from published
tables) to decide whether a vehicle arrives in each successive unit.

Example

It is desired to generate traffic of 720 vehicles/hour.

The unit of time on the cards is chosen to be } second.

The average rate of arrival is therefore 0-1 vehicle per unit of time.

A number is taken from a table of random numbers for each unit of time and

interpreted as a decimal fraction; if it is less than 0-1 an arrival is assumed in

the corresponding unit of time; if it is greater than 0-1 there is no arrival in
that unit.

In practice, the method was rather more refined than described above,

obtaining the maximum possible use from each random number®.

Since this method does not allow two or more vehicles to arrive in the same
unit of time, the unit should be chosen as small as practicable so that the depart-
ure from reality is not important.

The computer is ‘programmed’ to:

(a) Interpret the traffic cards.

(b) Act as the traffic signal by timing off alternate red and green periods.

(c) Keep a count of the queue, adding one for each arrival and subtracting
one at constant intervals during the green time to represent the discharge of
vehicles, until the queue becomes zero.

(d) Compute the total delay experienced by all vehicles (see below).

The total delay is computed by adding the number of vehicles in the queue
into a storage counter every unit of time, e.g. if, in successive units of time, the
number of vehicles in the queue is 2, 3, 3, 2, 3 and the unit of time is } second
then at the end of the first half second the total delay experienced is 2§
vehicle-second, at the end of the second unit of time the total delay is (2% 443
% }) vehicle-seconds and at the end of the fifth unit of time the total delay is
(2+3+43+424-3) } vehicle-seconds. If n is the queue during any unit of time and
u is the value of the unit then the total delay is uZn and the average delay per
vehicle is obtained by dividing this by the number of arrivals. Because of the
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high operating speed of the ACE the delay to about 10000 vehicles can be
computed in 5 minutes, i.e. for a flow of 1000 vehicles/hour, 10 hours’ traffic
can be analysed in 5 minutes.

APPENDIX 3
OPTIMUM CYCLE TIMES

n-phase intersection

For a particular intersection, optimum conditions are obtained by minimizing
the total delay with respect both to cycle time and to the division of the cycle.
Calculations of the average delay per vehicle have shown that the least delay
is obtained for a given cycle time when the effective green times of the phases
are approximately in proportion to the y values of the phases. The effect of
cycle time on delay will now be investigated.

The total delay for each arm of the intersection per unit of time is the product
of the average delay per vehicle and the flow. Thus, the total delay for the inter-
section as a whole is given by

D = I (Average delay per vehicle) x flow

where the average delay per vehicle is given approximately by equation (2).
Rearranging, we have

< [ ysl1=AR  y?
D= E N - :
T\ 2=y 2dAr—) ) )

Differentiating with respect to the cycle time gives

dD _ : (1—2r)2yesr & YH(2ZAr—r) ILj’,-&p(l-)c,-) :
I_Z{ Al—y)  de \DHA—3 (1—3) )} )

= O for minimum delay,

. im(l—z\r) 1= fofﬂr)_ < YH—yr) di
- 1=y 2 de ~ DA M—yr) de

—L d
If A is made proportional to y, then A = c~c— —)};' and Tt_' = J%; where L is

— 0 e (3‘3)

1

the lost time per cycle.

d
Substituting for A, and ‘—E-' in equation (3-3) we have

¥ (2 —r) -0

1 n Yoty n
oA Y —y,)2—L —L
2—(:*( P —Loy?) 2 o

? 1—yr
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Therefore

73 25 farnro -]

co(2—Y)—2L
T e e N S (35)
[co(1—-Y)—L]

In the above expression the last term in each brace is for most practical
purposes very small in comparison with the first term and an approximation
for them seems justifiable. When calculated values of delay were plotted against
cycle time for several intersections it was found that the optimum cycle was
approximately equal to twice the minimum cycle, shown by the vertical asymp-
tote to each curve (see Fig. 7). The minimum cycle will now be derived.

The minimum cycle, ¢m, is just long enough to allow all the traffic which
arrives in one cycle (assuming uniform flow) to pass through the intersection
in the same cycle. With random traffic, however, any green time which is
wasted because of the variability of the arrival times can never be recovered
and the minimum cycle in consequence is associated with very high delays
(theoretically, with infinite delays). It is the sum of the lost time per cycle and
the amount of time necessary to pass all the traffic through the intersection at
the maximum possible rate, i.e.

Q gz i
em = L+—cm+—cm+... +'—. m
D | 53 n

where ga/sn is the highest ratio of flow to saturation flow for the nth phase. Thus
¢m = L+cm(n1+y2+ ... +¥n)

= L+C- Y
and cm = m
The optimum cycle is therefore, approximately, 2L/(1 — ¥) and we may replace
L by i(li_—-l:-) in those terms which are comparatively small.
The term in the first brace becomes
rﬁ
d((r-sm-Z-a-vy)
and that in the second brace becomes
cod—2¢oL) {1
Dfi4——— T ..L]
(L/eo)?
= (c,2—2¢
(@@=2a) 14—
14Y
= C.(C.-ZL)(—_*:'—')—
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Equation (3-5) now becomes

(1+Y)p < Yrir .
ey, Leo—2D) 21: 1—_;{4{ Y—y)i—yH(1—Y)3}—

Lc2—Y)—2L]

T~ s (36)
LA+ YR < yrse

Let E = —— Zl ey Ut e Ul SRR 37

The equation reduces to

Lef2—Y)—2L] _
(co—2L)E 1—7)—LF =0 i (3-8)
Thus
c,s(l—Y)’—-Zc,“L(l—Y)(2—Y)+c,L2[5—4Y—w] +
E
2

+L3[E_ ] =l s (39

Since the optimum cycle has been found to be approximately 2L/(1 —Y)
in several cases, let us now assume it is given accurately by

2L

=—-—F ........................ 3'10
‘o -y (3-10)

where F is a factor depending on the flows, saturation flows and the lost time

of the intersection. We may combine the last two terms of equation (3-9) by
1—

replacing L3 (in the last term) by L2, i’ﬁ'—}")" . Dividing throughout by ¢, and

solving for a quadratic we have

2 l'\/Y’—YjF+1]E+[l/F-——l][l—(l—Y)[E']—Y
0= l—Y[ * 2

For most practical purposes F is sufficiently close to unity for equation
(3:11) to be written as

] .(311)

2L VYI_Y+HIE-Y
== 41 312
1y { 2 ] (312)
so that F in equation (3-10) will be given to a first approximation by
VYI_YFH1E-Y
F= {1 : ; ! , ................ 313)
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When determining the optimum cycle length, F may be evaluated from
equation (3-13) and its value substituted in equation (3-10) to give the cycle
time. If, however, the value so found differs by more than about 10 per cent
from unity then equation (3:11) should be used to obtain a more accurate
answer, knowing the approximate value of F.

Practical determination of the optimum cycle

To allow the cycle time to be evaluated more easily the equations can be
broken down and converted into graphical form as follows:

Rearrange equation (3-7) to make £ a function of (Gyr) instead of yy, where

G_3—Y
=T (314)
Thus
L2 (YR 1G4+ Y)G=Y)]
= 5, 2 #Ol @ (% 1 T T]
(3-15)

It has been found that a one per cent error in E produces only approximately
one-fifth per cent error in the optimum cycle length over the range of practical
interest. The value of E need not therefore be known too accurately and equation
(3.15) may be simplified by replacing the brace term of this equation by unity.
This term is approximately unity for most values of yr and Y but falls to about
0-8 when y, forms a large proportion of Y. However, if one phase has a relatively
large y value the other phases must have small values (where the approximation
has little effect) and the overall error in E will be considerably less than the term
containing y, as a large proportion of Y. The maximum error in the optimum
cycle due to this approximation is 4 to 5 per cent in extreme cases. The normal
error is likely to be less than 2 per cent.

Thus,
E-X i ,,l[Gy,(l W) e (3-16)
Y G
Let
E= i.i;,ﬂ, BRY,  seereireasisesians (3-17)
YinG 4
where
Br =Gy{1—Gyr)  ciiiiiiriiiiiis (3-18)

The expression for By has been plotted in terms of Gy, (see Fig. 10). Since
E involves the summation term its value will have to be determined by calcula-
tion, and hence, the equation should be made as simple as possible. Let us
define a new quantity Z such that
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FIG. 10. THE OPTIMUM CYCLE—FACTOR B,

From equation (3:17), Z may be given by

BT | s s vt S ssaEEAS SEES (3-20)

n
L X 5By
1

Substituting for E in equation (3:13), we have

VP —Y+Y3—YNZ2—Y
G g
Similarly, equation (3-11) can be modified to give

F comected = 1+ \/YLY/F+Y(3—Y)Z/z+[1/2F—|][1-(l-r)(a_y)yz,rz]_y G2

F= 1+

Values of F, over the whole practical range of Y and Z, were obtained to a first
approximation from equation (3-21). The values obtained were substituted in
equation (3-22) to find a second approximation to the true F values. A family
of curves of F against Z for different Y values showed that the ¥=0-5 curve had
the highest values, all the other curves lying below this one. Since it is perhaps
better to have the cycle longer than the optimum value rather than shorter, only
the Y=0-5 curve is shown in Fig. 11. For values of Y between 0-5 and 1-0 the F
values lie within a range of 0-05, thus, it was not considered necessary to com-
plicate the graph with these curves.

The determination of the optimum cycle is thus reduced to the following
simple steps:

(i) Work out G=(3 — Y)/2Y, and multpily each y value by G, giving Gyr

for each phase.
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FIG. 11. THE OPTIMUM CYCLE—FACTOR F

(ii) From Fig. 10 read the value of By corresponding to the particular value
of Gyy for each phase and multiply each B, by the appropriate value of the
saturation flow. Carry out the summation for all the phases, giving

n
erBr
1

(iii) Now substitute in equation (3-20), namely

n
Z =

n
LESrBr
1

to find Z for the whole intersection, where n is the number of phases and L
is the total lost time per cycle in the same units as 5.

(iv) From Fig. 11 read the value of F corresponding to the Z value and sub-
stitute in equation (3-10) to give the optimum cycle length

2L
B =bg =y

Approximate formula for the optimum cycle

Although the individual steps in the method just given for determining the
optimum cycle are relatively simple the method as a whole is perhaps too
elaborate for many purposes. On the other hand, the very rough empirical

2L . :
formula, ¢, = -7 given earlier, may be too inaccurate. It is felt that some-

thing between the two methods is required, i.e. a simple formula which has a
wider application than the above formula. Use was made of the method just
described to derive such a formula.
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A 2-phase intersection was first considered with y values of the phases in the
ratio of (a) 1:1, (b) 2:1 and (c) 3:1*. Three values of average saturation flow
of the intersection, 1200, 1800, 3600 vehicles/hour, were considered. Such a
range of y values and saturation flows covers most practical cases. Values of
Z were calculated from equation (3-20) for a lost time of 10 seconds and corres-
ponding values of F were obtained from Fig. 11. These values are shown in
Table 9 where it can be seen that F varies from 0-87 to 1-24.

TABLE 9
FACTOR F WITH A LOST TIME OF 10 SECONDS

y ratio
1:1 2:1 3:1

Average
saturation flow
(vehicles/hour)

1200 1-11 117 1-24

1800 1-01 1-05 1-11

3600 0-87 091 095

Having established practical limits for the factor F (and hence the optimum
cycle time) the variation with respect to lost time was then considered in the
two extreme cases in Table 9 and in one intermediate case:

(1) s = 1200 vehicles/hour, y ratio 3:1
(2) s = 1800 vehicles/hour, y ratio 2:1
(3) s = 3600 vehicles/hour, y ratio 1:1

F is found as before from equation (3-20) and Fig. 11. The product 2LF, i.e.
the numerator in the cycle time formula, is formed and is shown in Fig. 12
plotted against lost time (solid lines). It was found that a linear approximation
to these curves could be obtained from a formula of the type

KL+5

=17

where K=1-98, 1-60, 1-24, respectively, in the three cases. These are shown as

dotted lines in Fig. 12. agreement is quite good especially since the lost
time is not likely to be less than about 4 seconds anyway.

K values have also been determined for other values of saturation flow and y
ratios using equation (3-20) and Fig. 11. The values are shown in Table 10.

The table covers nearly all cases of 2-phase intersections likely to occur in
practice. However, a single value of K is required which is representative of the
more common junctions. Some of the junctions covered in Table 10 are quite
rare, e.g. a y ratio of 3:1. In selecting an average case the most common junctions
should receive special consideration, e.g. those with y ratios between 1:1 and 2:1
* Preliminary calculations showed that the numerator of the optimum cycle formula, 2LF,

was not appreciably affected by changes in the Y value of the intersection (assuming constant
y ratio) over the usual working range of ¥: 0-4—0-9.
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and average saturation flows between 1500 and 3000 vehicles/hour. The K values
for this range (see Table 10) lic between 1-31 and 1-70. Thus, a typical junction
might have K=1-50. Calculations of 2LF were made for these limits and these
are shown in Fig. 13, together with curves derived from the simple equation,
1-5L4 5
1—Y
formula fits the calculated results better than the original simple formula.

2L
=71_y° and from ¢, = seconds. It can be seen that the latter

TABLE 10

KL+ 5
VALUES OF K IN THE FORMULA ¢, = ——— seconds

1—Y
\ y ratio

Averagc\ 1-1 2:1 3:1
saturation flow

(vehicles/hour) \

1200 1-72 1-84 1-98
1500 1-60 1-70 1-84
1800 1-52 1-60 1-72
2100 1-46 1:54 1-64
2400 1-40 1-48 1-56
3000 1-31 1-39 148

3600 l 1-24 132 1-40

Multiphase intersections

Calculations of Z (equation (3-20)) for a number of symmetrical intersections
(y ratio 1:1) showed that Z was roughly independent of the number of phases,
for a given lost time. For asymmetrical multiphase intersections values of Z
were within the range of variation obtained for 2-phase intersections. Although
it would be difficult to construct a complete table such as Table 10 for values
of K for multiphase junctions, the simple formula derived for the average 2-
phase junction can be extended to include average multiphase junctions. Thus,
in all cases

1'5L + 5 .
o= —l_-—iY— seconds, approximately. ................ (3-24)

APPENDIX 4
OPTIMUM CONDITIONS AT AN INTERSECTION

Degree of saturation
When an intersection which is controlled by fixed-time traffic signals is
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working under optimum conditions the cycle time is given to a first approxima-
tion by

2L
Co = l_—T’ ........................................ (4' l)
and the proportions of green time for n phases satisfy
co— L
1l+x,+..+xr+..+x,=°cu .............. 42)
.
Co
L ooy
From equation (4:1) — = l__Y .................... (4:3)
Co 2
Thus
n 1
2.‘1,=§(l Y] e i S B CERER SRR (4-4)
1
Since the green times are approximately proportional to the y values,
A, X
;Lr +1 Y" +1
Rearranging, we have
L’ - Yr +1
A A
e ¥ =X =KGBAY s osusies v s SRS S 4-5)

Thus, the degree of saturation is the same for all phases when the intersection

is working under optimum conditions. Now, X, = i—: sk = ‘;—f , .. and so on,
so that
n n Y
i = (;’Iy,) / o= e (4-6)
Combining with equation (4-4) we have
Yy 1
; = ‘2‘(1 +Y)
Therefore
2Y
0 = TPy e (47)

Average delay for the whole intersection

This derivation applies only to intersections where all arms of the same
phase have approximately the same value of the ratio, flow/saturation flow.
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The total delay per unit time for all arms will be given by

"l
co{1—Ar)?gr xo? ] .
D= [ } approximately ........ 48
E 20— 2wy pp y (48)

where ¢, and x, are optimum values and n’ is the number of approaches to
the intersection. The summation may be represented by Qd where Q is the total
flow per unit time through the intersection and d is the average delay for all
vehicles. Thus,

G S0 ix
R, NS A T — 4-9
# 2Z (=)  21—x) =

Under optimum conditions

Y ;

Y (equation (4.7))
(147Y)

and Ar = J’r-z—Y—

Yy
"'(_ 2Y") T oy

P
9d = 221 (1—y) +(1—Ya) ............ (410)

5205
52‘—51: {1+y,(1_liy_) ([ 1+Y] 1+Y)}qr 20’ Yy’s)

To a first approximation we may neglect terms in y,® giving

Xg =

Therefore,

l

o=t

0d = 2n'Y?
= — ( )Qr'l' Y"")
. ‘_"(Q— £y )+ <ol
2 Y (1-Y?)
Thus ,
G50 i,lyrqr , Y2

2\ vo / ou-vy
e :‘J’y’q' i ad.le l
T2 YO Q(+Y) c,,(l—Y)
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1
Since T = m from equation (4-1), we may write
7 €o i 5;: Yegr 2n'Y?
2 YQ ' LQ(1+Y)

Some examples. Let us assume that the lost time is 5 seconds per phase and
the saturation flow is 1800 vehicles/hour, i.e. } vehicle/second, on all arms.

Type Ratio of y values Average delay expression
= 1426Y
2-ph 1:1 d =025 . (413
B f"( 1+Y ) =B
- 142-8Y
" 2:1 d=0-2.2£°(—) e (414)
14+Y
- 1431Y
" 3:1 d=0-]9co(——) ....(+15)
14Y
- 14357
" 4:1 d= 0-]6«:.,(—— ..(4-16)
1+Y
3-ph 1:1:1 d =033 (1+2'2y) 417)
- 1 =033 ——— ) ----(+
phase \ 5 (
— 14-2-1Y
4-phase 1:1:1:1 d= 0'3860(——) ....(418)
14Y

It should be noted that the above expressions for delay do not take into
account the empirical correction term of equation (1). The expressions may be
approximately corrected by subtracting 10 per cent of the delay.

APPENDIX 5

AVERAGE QUEUE AT THE BEGINNING OF THE
GREEN PERIOD

LET us consider an arm of an intersection where the initial queue at the begin-
ning of the green period (and reinforced by fresh arrivals during the green)
disappears before the commencement of the red signal. The cycle in this case is
said to be unsaturated ,and the initial queue at the beginning of the green period
is simply equal to the number of vehicles which have arrived during the red,
ie.,



If we now consider a case in which the cycles are fully saturated over an
interval of time, then the length of the queue will have gradual variations over
this interval, on which are superimposed sharper increases and decreases corres-
ponding to the red and the green periods respectively. The range of these short
period fluctuations on the average will be equal to gr, and the average queue
over the whole interval, assuming the queue at the end to be roughly the same
as it was at the beginning, is equal to the product of the flow and the average
delay per vehicle.

Thus, the average queue at the beginning of the green period is equal to the
average queue throughout the interval plus half the average range of the cyclic
fluctuations, i.e.

Ne=gqd43qr oo (52)

If the average queue for the group of saturated cycles decreases until the
cycles are only just saturated, then its value will be 4 gr and the average queue
at the beginning of the green period will be gr, the same as for the unsaturated
cycles. It cannot be less than this value.

The two cases considered are rather specialized, assuming that the cycles
are all saturated or all unsaturated. In practice, at most intersections, there is
a mixture of saturated and unsaturated cycles owing to the random nature of
the flow of traffic (see Fig. 8).

For these in-between cases we may divide the time into, say, n fully saturated
cycles and m unsaturated cycles. Thus, the flow g, with average delay per
vehicle d, over (m - n) cycles may be considered as a flow of g,, with delay ds,
for n cycles and flow gu, with delay d, for m cycles.

During n cycles the average maximum queue will be
} qar + qsds

During m cycles the average maximum queue will be
qur

Therefore, the average queue at the beginning of the green period over
(m + n) cycles will be:

1
sz(inq.r+nq.d,+mq.,r) ................ (5-3)
Now the average flow is given by
_ ngs+mqu
= "ntm

and the average delay by
d= nd.q:+mduqu
(n+m)q
Thus,
ngsds+tmaqur
mm trereeeesersessese

We will now try to get the second part of equation (5-4) in terms of ¢ and d
only. For unsaturated cycles, the net rate of discharge of the queue is s—qu.
Thus, the vehicles disperse in time N/(s—¢u) and the average queuc is

N N
2 (5—‘1u+r).

N=igr+
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The average delay d,, is therefore given by

. L :
.= S___q-+r) ............................ (5:5)

since N is gyr for unsaturated cycles.

Rearranging, we have

( cls— q..)) .......................... (5°6)

Equation (5-4) becomes
_ n qsds + mgudu
N=tar+——3m
N=ggr+gd - :eovuaeeovs qoves o svaws 57

The effect of the approximation in equation (5-6) will be to give a value of N
which is too small when most of the cycles are unsaturated. When most of the
cycles are saturated, the effect of the approximation is small since dy is very
much smaller than d; and m is also smaller than n. Since we know that the
average queue cannot be less than g r, the general expression for N is given as :

N = (@ qr + qd) or g r, whichever is the larger. ........ (58)
The examples given in Table 6 justify this result.

To make this equation applicable to practical conditions a slight correction
should be made. Vehicles in this investigation (see Appendix 2) were assumed
to arrive at the intersection at times A, A, etc. in Fig. 1 but in practice they
would join the queue earlier than the theory assumes owing to the finite extent
of the queue. Thus, the calculated values of queue will be somewhat smaller
than the observed values, the difference depending on the length of the queue
and the free running speed of the traffic.

Let v = free running speed of the traffic

t = time for a vehicle to travel the length of the queue at the running
speed

a = number of lanes in the queue

Jj = average spacing of vehicles in the queue.

Ni
Now the length of the queue when the green period begins = _a!
Therefore
)
T av
The number of vehicles which arrive in this time is
q Nj
av

Therefore, the expression for the average queue at the beginning of the green
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period should be

N, N,
N=q(£+d) +q—av=lorqr+g}7j
r
q(5+d) gr
= or A
14 (1—‘-’1)
ay av
Thus
N=q(§+d)(l+z—{) or qr(l+z—‘: ...... (59)
APPENDIX 6

STOPS AND STARTS OF VEHICLES

Proportion of vebicles which stop at least once

Let us assume that all vehicles which arrive whilst there is still a queue of
vehicles have to stop. In practice some of these vehicles would only have to
slow down; the expression to be derived will therefore overestimate the effect

If T is the portion of the green period whilst the queue remains then
sT+q(g—T)=gqc

r=9—9
8s—gq
oz
s
T ’
ST e RO ReRss veEaR ShieE Svtes 61)
If R is the proportion of vehicles which stop
R=r+T
= 4 from equation (61)
Tea—y =
1—A
R= Ty  rrrrerrersesssniine 6-2)

Average number of stops and starts per vebicle

The total number of stops and starts during each cycle is equal to the number
of vehicles in the queue at the beginning of the green period plus those vehicles
which arrive while the queue is clearing during the green period.
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If the average queue at the beginning of the green period (denoted by N)
can clear during the green, i.e.

if T=¢ <g
then the average number of stops and starts per vehicle is
N
N+ Sq_
P 24
gc
_ Ns
T ge(s—q)
ie.,
N
S e SRS L s eaerareress st 63
2 —y) ©3)

where N = g(; + d) or gr, whichever is larger (equation (8)). If the average
queue at the beginning of the green period cannot be fully discharged during
one green time, i.e.

if

§—q >g

then all vehicles which arrive during the green will be stopped as well as those
which constitute the queue at the beginning of the green period. Thus,
p_Nta
gc

N
= & e . R (6'4)

where N is given by equation (8).

Using equations (6-3) and (6+4), the average number of stops and starts was
calculated for several values of the degree of saturation for A=0-4 and a flow of
10 vehicles per cycle. The results are shown in Fig. 9 together with a curve
representing the proportion of vehicles which make at least one stop (from
equation (6-2)).
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